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Abstract

We examine the light scattering from spheres aggregated into tetrahedral
structures and the changes that occur when the internal stucture of the
particle system is modified by filling the central portion of the tetrahedron
with an index-matching solution. Several effects are noticed in the
scattering signals. The scattering phase function of aggregates is quite
sensitive to changes in the internal structure within the aggregate. The
positions and relative intensities of the maxima and minima of an
aggregate tend to have a stronger dependence on orientation and internal
structure than those of a sphere containing an inclusion. As the area of the
interfaces increases, the backscatter intensity increases, resulting in a
decrease in the asymmetry parameter. Specular reflections also occur
because of the constructive interference of rays reflecting off the different
lattice sites.
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1. Introduction

Mie theory predicts the electromagnetic fields scattered by a homo-
geneous sphere that is illuminated by a plane wave. Because of its relative
simplicity, a homogeneous sphere is often used to model the light
scattered from irregular particle systems, despite that the light scattered
from these spheres is often significantly different than that scattered by
other types of particles [1–4]. One distinguishing characteristic of the light
scattered from spheres is the presence of morphology dependent
resonances (MDRs) [5]. When the spherical symmetry is broken, either
through the inclusion of surface perturbations or volume irregularities,
these resonant peaks broaden and diminish in amplitude [6,7]. Another
characteristic of spheres is that they generally scatter a larger proportion
of light into the forward direction than they scatter irregular particles; i.e.,
their asymmetry parameters may be significantly larger than the particles
for which they are being used to model [1–4]. The symmetry of spherical
particles provides an additional identifying feature, since the total
intensity of their scattered light has no azimuthal dependence. Although
the scattering phase functions of nonspherical particles are often
overwhelming because they have both a θ and φ dependence, this
additional scattering information can be used to characterize the system.

One type of nonspherical particle with interesting optical properties is an
aggregate made up of many spherules in contact. Carbon (soot) particles
form loose fractal-like aggregates having Rayleigh-sized spherical
components [8]. Since these particles play a role in the earth radiation
budget, their scattering properties are of especial interest [9]. Other
aggregates of interest are clusters of biowarfare agent spores. When a
liquid solution containing such spores is aerosolized and the liquid
evaporates, compact and nearly spherical clusters of these spores remain.
Early warning systems depend on rapid identification of these particles,
and elastic and fluorescent light scattering may play a crucial role in the
development of such systems. The motivation for our studies is the
characterization of this latter type of particle through elastic light
scattering [10].

One of the driving questions in our research is what effect does the
internal structure of a particle system have on its scattered field? In our
studies of spore aggregates (and for many other types of aggregates), no

1



prior information exits on their internal structure: either the orientation of
the individual spores with respect to each other, the addition of
contaminants in the lattice, or whether a liquid core fills the gaps between
the spores. The internal structure may have a drastic effect on the accuracy
of modeling efforts.
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2. Results

We obtained the scattering results shown in this report by using a
finite-difference time domain (FDTD) algorithm with a perfectly matched
absorbing boundary condition, which is a direct solution of Maxwell’s
time-dependent curl equations [11–15]. This method treats the scattering
and absorption of the particle as an initial-value problem. It should be
noted that this scheme requires a descritization of the particle system, so it
is relatively computer intensive compared with multipole techniques that
are extremely efficient at calculating the scatter from aggregates of spheres
[16–27]. However, in our studies, we are interested in the dependence of
the scatter on the internal structure of the particle, and in some cases, the
aggregate components could not be described as spheres. Multipole
techniques are incapable of handling such systems. To verify the validity
of the calculations, we compare our results with those calculated using
multipole techniques. Figure 1 shows a comparison of the scatter from a
pair of spheres in contact, illuminated end-on, calculated using the
multipole method and the FDTD algorithm with a mesh resolution of
λ/30. The refractive index, m = 1.53 + 0.001i, approximates that of
biological spores [28,29]. Only a small discrepancy exists between the
calculated results of the two models.

Figure 1. Light scattering
phase function from a pair
of x = π (a = λ/2) ,
m = 1.53 + 0.001i spheres
in contact, illuminated
end-on, calculated using
multipole method (solid
line) and FDTD algorithm
with a mesh resolution of
λ/30 (dashed line).
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One system that can provide insight into the effect of internal structure on
the scattering from an aggregate system is that of a sphere containing a
spherical inclusion [30–35]. In this system, the amount of internal
structure can be varied by changing the size and optical properties of the
inclusion. Figure 2 shows the light scattering Mueller matrix for two
spherical particles, one of which has a large absorbing inclusion. The gross
scattering properties change drastically when the inclusion is present: the
absorption efficiency increases from Qabs = 0.0333 with no inclusion
present to Qabs = 0.298 when the inclusion is present, and the scattering
efficiency decreases from Qsca = 2.021 with no inclusion present to Qsca =
2.0165 when the inclusion is present. Interestingly, compared with these
efficiencies, the amplitude of the phase function (proportional to matrix
element S11) is only slightly affected by the presence of the inclusion. The
positions of the maxima and minima and the relative heights change only
slightly. The polarization state of the scattered light is more sensitive to the
presence of the inclusion than to the total intensity. In summary, even
though the inclusion represents a substantial volume of the particle
system and changes the absorption efficiency of the particle system
significantly, it has little effect on the scattering phase function. (Note that
these conclusions may not apply when the inclusion is placed in the
region very near the edge of the sphere.) As we shall see, this is not the
case for aggregates.

Figure 2. Light scattering
Mueller matrix as a
function of scattering
angle of an
mhost = 1.53 + 0.001i,
ahost = λ sphere
containing an
minc = 1.94 + 0.66i,
ainc = ahost/4 spherical
inclusion offset a distance
d = ahost/4 in
forward-scattering
direction (solid line). Also
shown are matrix elements
for sphere without
inclusion (dashed line).
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One of the simplest approximations to an aggregation of spores is four
spherules in a tetrahedral orientation as shown in figure 3. This system is
digitized and used in the FDTD algorithm to calculate the resulting
scattering phase function. The easiest method of examining the effect of
the internal structure of the scattering system is to remove it by filling the
central portion of the tetrahedron with a refractive-index-matching
solution. We performed this by setting the refractive index in the region
r < λ/2 to m = 1.53 + 0.001i (equivalent to the refractive index of the other
spherules). This is equivalent to filling the air gaps between the spherules
with a cell-like substance to a distance equal to the radius of the spherules.
The scattering phase function averaged over φ is shown in figure 4 for two
incident orientations: Figure 4a shows the case of a plane wave incident
upon the particle from the bottom (angle of incidence is 0◦), and figure 4b
shows the case of a plane wave incident upon the particle from the top
(angle of incidence is 180◦). There are several results that can be gleaned
from these figures.

We expect and see from figure 4 that an extremely strong dependence is
on the particle orientation. Indeed, the phase functions shown in figure 4a
are quite different from those of figure 4b. From our calculations of the
phase functions of spheres shown in figure 2, we might also expect that
the internal structure does not have a large effect on the phase function,
but this is not the case. Unlike the minor changes that occur in the phase
function when the internal structure of a spherical system is modified,
changes in the phase function of the aggregate have a much stronger
dependence on its internal structure, particularly for 180◦ incidence. The
positions of the maxima and minima shift (apparent in both figs. 4a and

Figure 3. Diagram of
tetrahedral scattering
system used in our
simulations. Four a = λ/2,
m = 1.53 + 0.001i spheres
are in contact. To study
effect of internal structure,
we set refractive index in
region r < λ/2 to
m = 1.53 + 0.001i. Angle
of incidence of
illuminating plane wave is
measured from positive z
axis.
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Figure 4. Azimuthally
averaged scattering phase
functions from system
illustrated in figure 3:
(a) plane wave is incident
upon particle from bottom
(angle of incidence is 0◦),
and (b) plane wave is
incident upon particle
from top (angle of
incidence is 180◦).
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4b), and their relative amplitudes also change significantly. In addition,
new maxima and minima occur in the phase function where there was
none, or only minor perturbations existed previously (apparent in fig. 4a).
These changes are quite significant despite that the phase function is
averaged over the azimuthal angle φ. From our simulations, the structure
of the phase function of a spherical system is much harder to perturb
through the introduction of volume perturbations within the particle than
the structure of an aggregate system.

Another effect of changing the internal structure of the particle system is a
change in the backscatter intensity. Enhanced backscatter is the result of
constructive interference of reciprocal light rays interacting with multiple
sites in a particle system [36]. Particles having more surface area are
expected to have a more dominant backscatter peak, since light rays
striking the particle system have more paths to reach the backscatter
direction after multiple reflections. We see this is the case in our
simulations shown in figure 4. The unfilled tetrahedral structures have
more surface area and consequently a higher backscatter peak. Enhanced
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backscatter affects the asymmetry parameter, a vital input in many global
climate models. For both incident angles illustrated in figure 4, the
asymmetry parameter decreases when the enhanced backscatter increases.
When the incident angle is 0◦, the asymmetry parameter decreases from
g = 0.788 when the structure is unfilled to g = 0.787 when the structure is
filled (a decrease of ∼ 0.1 percent). When the incident angle is 180◦ the
asymmetry parameter decreases from g = 0.643 when the structure is
unfilled to g = 0.621 when the structure is filled (a decrease of ∼ 3.5
percent). These results are relevant to scattering in the atmosphere. Ice
crystals in cirrus clouds, for instance, tend to form irregular aggregates.
Because cirrus clouds cover a significant portion of the earth, they
influence the climate through their effects on the radiation budget. In
many spectral regions, scattering algorithms tend to overestimate the
asymmetry parameters of these crystals [4]. One reason for this is that
these algorithms do not account for the effects of aggregation on the
asymmetry parameter of the ice crystals.

One other effect of the scattering from aggregate systems is constructive
interference that occurs between rays scattered from the different lattice
sites. The planes that intersect lattice sites can be thought of as mirrors that
reflect the incident beam. One lattice plane of the tetrahedral structure
shown in figure 3 is parallel to the x-y plane. As a result, backscatter rays
from the spherules located on these lattice sites also contribute to an
enhancement of the backscatter peak. Three other planes are oriented at
approximately 20◦ with respect to the z axis. We expect to see an
enhancement at three locations of the azimuthal angle φ = 60◦, 180◦, and
300◦ when the zenith angle is approximately θ = 40◦. Figure 5 shows the
light scattering total intensity as a function of the zenith and azimuthal
angles for the unfilled tetrahedral structure shown in figure 3 for an
incident angle of 0◦. Evident in this figure are distinct increases in the
intensity at these locations. It is interesting to note that the minima that
occur at φ = 0◦, 120◦, and 240◦, almost completely cancel the effects of
these maxima, so that this structure is not apparent when the phase
function is averaged over the azimuthal angle φ (shown in fig. 4a).
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Figure 5. Angular
dependence of total
scattered intensity of
system illustrated in
figure 3 when plane wave
is incident upon particle
from bottom (angle of
incidence is 0◦).
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3. Conclusion

In our simulations of irregular aggregates, we found that the internal
structure (i.e., filling the central portion of the tetrahedron with a
refractive-index-matching solution) has an extremely strong impact on the
scattering phase function. Changes made to the internal structure of a
spherical system (for instance, adding a large inclusion) may not
significantly alter the positions of the maxima and minima or their relative
amplitudes in the scattering phase function. This information is quite
important in inversion schemes, since it allows the size and optical
properties of the host to be found. Internal structure in the aggregate shifts
these positions and can even add new maxima and minima, making sizing
difficult. The internal structure also affects the amount of enhanced
backscatter, thereby affecting the asymmetry parameter. However, the
additional information provided in the azimuthally dependent phase
function can provide information on the lattice structure of the aggregate.
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